
eAppendix 

The following code is the generic specification of an unconstrained logistic regression model with a non-
informative prior on parameters beta1 and beta2. X and Y indicate exposures of interest as specified in our 
example (or in a given dataset). 

proc mcmc data=MCMC nmc=*Input number of iterations* nbi=*Input number of burn-in* monitor=(beta0 
beta1 beta2) /*SEED =________*/; 
 
parms (beta0 beta1 beta2) 0; *this indicates starting values for the simulation;  
 
prior beta0 beta1~normal(0, var=1e6); 
prior beta2 ~ normal(0, var=1e6); 
 
p = logistic(beta0 + beta1*X +beta2*Y); 
 
model case ~ binomial(n,p); 
 
run; 
 
The following code is an adaptation of the code above with integration of an order constrained prior for 
exposure Y relative to X. In this scenario, we specify a prior, as in our example, that beta2 is greater than or 
equal to beta1. A non-informative prior is retained for beta1. In the absence of data, this prior is centered at a 
median value of 1.00 (90% HPD: -6.00, 7.00). This can be illustrated if the user simply removes ‘X’ and ‘Y’ 
from the model ‘p’. This code can be adapted to include order constraints for multiple exposures of interest, or 
categories of a single exposure as in dose-response analyses. 
 
proc mcmc data=MCMC nmc=*Input number of iterations* nbi=*Input number of burn-in* monitor=(beta0 
beta1 beta2) /*SEED =________*/; 
 
parms (beta0 beta1) 0; 
 
prior beta0 beta1~normal(0, var=1e6); 
prior beta2 ~ normal(0, var=1e6, lower=beta1, upper=1e6); 
 
p = logistic(beta0 + beta1*X +beta2*Y); 
 
model case ~ binomial(n,p); 
 
run; 
 
 
 
 
 



 
Simulation: We present three different scenarios where (1) the order constraint does not change parameter estimates, (2) the order 
constraint biases parameter estimates, and (3) where the order constraint improves the estimates of a weak parameter relative to a 
well-identified parameter. Simulation 1 and 2 specify x1 and x2 as Bernoulli with probability 0.5. In simulation 3, we specify x1 and 
x2 as Bernoulli with probability 0.5 and 0.05, respectively. All simulations were repeated 100 times. The final scenario is similar to 
that seen in the example of the Savannah River Site cohort exposed to gamma and beta radiation from tritium; the effect of β1 is well 
identified from the data but there is substantially less information regarding the effect of β2. We measure the change in estimates with 
MSE. Simulation 1 shows no change in MSE using an order constraint while simulation 2 shows an increase in MSE associated with 
an order constraint that biases parameter estimates. In simulation 3, the MSE indicates that when the data for one variable (x2) are 
weaker than a reference variable (x1), the order constraint will be closer to the true value, on average. 
  

         Parameter estimates 

 
    

β1 
  

β2 
  

    
mean std dev MSE  mean std dev MSE 

Simulation True Values 
 

N 
        

           1 β1=1, β2=2 
 

1,000 
        

 
no constraint 

 
0.998 0.142 0.020 

 
2.01 0.158 0.025 

 
 

β2≥β1 
  

0.998 0.141 0.020 
 

2.01 0.158 0.025 
 

           2 β1=1, β2=0 
 

1,000 
        

 
no constraint 

 
1.00 0.162 0.026 

 
0.004 0.163 0.027 

 
 

β2≥β1 
  

0.672 0.134 0.126 
 

0.728 0.132 0.547 
 

           3 β1=1, β2=2 
 

500 
        

 
no constraint 

 
0.993 0.234 0.055 

 
2.08 0.460 0.218 

   β2≥β1     0.995 0.234 0.055   2.14 0.400 0.180 
 


